Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
N Engl J Med ; 388(18): 1702-1707, 2023 May 04.
Article in English | MEDLINE | ID: covidwho-2314839
2.
Chest ; 163(1): 12-13, 2023 01.
Article in English | MEDLINE | ID: covidwho-2177391
3.
ATS Sch ; 2(4): 651-664, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1836568

ABSTRACT

BACKGROUND: Advancements in technology continue to transform the landscape of medical education. The need for technology-enhanced distance learning has been further accelerated by the coronavirus disease (COVID-19) pandemic. The relatively recent emergence of virtual reality (VR), augmented reality (AR), and alternate reality has expanded the possible applications of simulation-based education (SBE) outside of the traditional simulation laboratory, making SBE accessible asynchronously and in geographically diverse locations. OBJECTIVE: In this review, we will explore the evidence base for use of emerging technologies in SBE as well as the strengths and limitations of each modality in a variety of settings. METHODS: PubMed was searched for peer-reviewed articles published between 1995 and 2021 that focused on VR in medical education. The search terms included medical education, VR, simulation, AR, and alternate reality. We also searched reference lists from selected articles to identify additional relevant studies. RESULTS: VR simulations have been used successfully in resuscitation, communication, and bronchoscopy training. In contrast, AR has demonstrated utility in teaching anatomical correlates with the use of diagnostic imaging, such as point-of-care ultrasound. Alternate reality has been used as a tool for developing clinical reasoning skills, longitudinal patient panel management, and crisis resource management via multiplayer platforms. CONCLUSION: Although each of these modalities has a variety of educational applications in health profession education, there are benefits and limitations to each that are important to recognize prior to the design and implementation of educational content, including differences in equipment requirements, cost, and scalability.

5.
Ann Intern Med ; 174(5): 613-621, 2021 05.
Article in English | MEDLINE | ID: covidwho-1239133

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic continues to surge in the United States and globally. OBJECTIVE: To describe the epidemiology of COVID-19-related critical illness, including trends in outcomes and care delivery. DESIGN: Single-health system, multihospital retrospective cohort study. SETTING: 5 hospitals within the University of Pennsylvania Health System. PATIENTS: Adults with COVID-19-related critical illness who were admitted to an intensive care unit (ICU) with acute respiratory failure or shock during the initial surge of the pandemic. MEASUREMENTS: The primary exposure for outcomes and care delivery trend analyses was longitudinal time during the pandemic. The primary outcome was all-cause 28-day in-hospital mortality. Secondary outcomes were all-cause death at any time, receipt of mechanical ventilation (MV), and readmissions. RESULTS: Among 468 patients with COVID-19-related critical illness, 319 (68.2%) were treated with MV and 121 (25.9%) with vasopressors. Outcomes were notable for an all-cause 28-day in-hospital mortality rate of 29.9%, a median ICU stay of 8 days (interquartile range [IQR], 3 to 17 days), a median hospital stay of 13 days (IQR, 7 to 25 days), and an all-cause 30-day readmission rate (among nonhospice survivors) of 10.8%. Mortality decreased over time, from 43.5% (95% CI, 31.3% to 53.8%) to 19.2% (CI, 11.6% to 26.7%) between the first and last 15-day periods in the core adjusted model, whereas patient acuity and other factors did not change. LIMITATIONS: Single-health system study; use of, or highly dynamic trends in, other clinical interventions were not evaluated, nor were complications. CONCLUSION: Among patients with COVID-19-related critical illness admitted to ICUs of a learning health system in the United States, mortality seemed to decrease over time despite stable patient characteristics. Further studies are necessary to confirm this result and to investigate causal mechanisms. PRIMARY FUNDING SOURCE: Agency for Healthcare Research and Quality.


Subject(s)
COVID-19/mortality , COVID-19/therapy , Critical Illness/mortality , Critical Illness/therapy , Pneumonia, Viral/mortality , Pneumonia, Viral/therapy , Shock/mortality , Shock/therapy , APACHE , Academic Medical Centers , Aged , Female , Hospital Mortality , Humans , Intensive Care Units , Length of Stay/statistics & numerical data , Male , Middle Aged , Pandemics , Patient Readmission/statistics & numerical data , Pennsylvania/epidemiology , Pneumonia, Viral/virology , Respiration, Artificial/statistics & numerical data , Retrospective Studies , SARS-CoV-2 , Shock/virology , Survival Rate
6.
Resusc Plus ; 6: 100135, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1213499

ABSTRACT

AIM: Determine changes in rapid response team (RRT) activations and describe institutional adaptations made during a surge in hospitalizations for coronavirus disease 2019 (COVID-19). METHODS: Using prospectively collected data, we compared characteristics of RRT calls at our academic hospital from March 7 through May 31, 2020 (COVID-19 era) versus those from January 1 through March 6, 2020 (pre-COVID-19 era). We used negative binomial regression to test differences in RRT activation rates normalized to floor (non-ICU) inpatient census between pre-COVID-19 and COVID-19 eras, including the sub-era of rapid COVID-19 census surge and plateau (March 28 through May 2, 2020). RESULTS: RRT activations for respiratory distress rose substantially during the rapid COVID-19 surge and plateau (2.38 (95% CI 1.39-3.36) activations per 1000 floor patient-days v. 1.27 (0.82-1.71) during the pre-COVID-19 era; p = 0.02); all-cause RRT rates were not significantly different (5.40 (95% CI 3.94-6.85) v. 4.83 (3.86-5.80) activations per 1000 floor patient-days, respectively; p = 0.52). Throughout the COVID-19 era, respiratory distress accounted for a higher percentage of RRT activations in COVID-19 versus non-COVID-19 patients (57% vs. 28%, respectively; p = 0.001). During the surge, we adapted RRT guidelines to reduce in-room personnel and standardize personal protective equipment based on COVID-19 status and risk to providers, created decision-support pathways for respiratory emergencies that accounted for COVID-19 status uncertainty, and expanded critical care consultative support to floor teams. CONCLUSION: Increased frequency and complexity of RRT activations for respiratory distress during the COVID-19 surge prompted the creation of clinical tools and strategies that could be applied to other hospitals.

8.
Ann Am Thorac Soc ; 17(11): 1358-1365, 2020 11.
Article in English | MEDLINE | ID: covidwho-908299

ABSTRACT

Coronavirus disease (COVID-19) is an illness caused by a novel coronavirus that has rapidly escalated into a global pandemic leading to an urgent medical effort to better characterize this disease biologically, clinically, and by imaging. In this review, we present the current approach to imaging of COVID-19 pneumonia. We focus on the appropriate use of thoracic imaging modalities to guide clinical management. We also describe radiologic findings that are considered typical, atypical, and generally not compatible with COVID-19. Furthermore, we review imaging examples of COVID-19 imaging mimics, such as organizing pneumonia, eosinophilic pneumonia, and other viral infections.


Subject(s)
Coronavirus Infections/diagnostic imaging , Diagnostic Imaging/methods , Pneumonia, Viral/diagnostic imaging , Betacoronavirus , COVID-19 , Diagnosis, Differential , Diagnostic Imaging/trends , Humans , Pandemics , Radiography, Thoracic , SARS-CoV-2 , Tomography, X-Ray Computed , Ultrasonography
9.
Ann Am Thorac Soc ; 2020 Oct 06.
Article in English | MEDLINE | ID: covidwho-835977

ABSTRACT

COVID-19 is an illness caused by a novel coronavirus that has rapidly escalated into a global pandemic leading to an urgent medical effort to better characterize this disease biologically, clinically and by imaging. In this review, we present the current approach to imaging of COVID-19 pneumonia. We focus on the appropriate utilization of thoracic imaging modalities to guide clinical management. We will also describe radiologic findings that are considered typical, atypical and generally not compatible with of COVID-19 infection. Further, we review imaging examples of COVID-19 imaging mimics, such as organizing pneumonia, eosinophilic pneumonia and other viral infections.

SELECTION OF CITATIONS
SEARCH DETAIL